Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Food Funct ; 15(9): 4983-4999, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38606532

RESUMO

Propolis is a resinous mixture produced by honeybees which has been used since ancient times for its useful properties. However, its chemical composition and bioactivity may vary, depending on the geographical area of origin and the type of tree bees use for collecting pollen. In this context, this research aimed to investigate the total phenolic content (using the Folin-Ciocalteu assay) and the total antioxidant capacity (using the FRAP, DPPH, and ABTS assays) of three black poplar (Populus nigra L.) propolis (BPP) solutions (S1, S2, and S3), as well as the chemical composition (HPLC-ESI-MSn) and biological activities (effect on cell viability, genotoxic/antigenotoxic properties, and anti-inflammatory activity, and effect on ROS production) of the one which showed the highest antioxidant activity (S1). The hydroalcoholic BPP solution S1 was a prototype of an innovative, research-type product by an Italian nutraceutical manufacturer. In contrast, hydroalcoholic BPP solutions S2 and S3 were conventional products purchased from local pharmacy stores. For the three extracts, 50 phenolic compounds, encompassing phenolic acids and flavonoids, were identified. In summary, the results showed an interesting chemical profile and the remarkable antioxidant, antigenotoxic, anti-inflammatory and ROS-modulating activities of the innovative BPP extract S1, paving the way for future research. In vivo investigations will be a possible line to take, which may help corroborate the hypothesis of the potential health benefits of this product, and even stimulate further ameliorations of the new prototype.


Assuntos
Anti-Inflamatórios , Antioxidantes , Populus , Própole , Própole/química , Própole/farmacologia , Populus/química , Antioxidantes/farmacologia , Antioxidantes/química , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/química , Animais , Antimutagênicos/farmacologia , Antimutagênicos/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Camundongos , Humanos , Fenóis/química , Fenóis/farmacologia , Fenóis/análise , Sobrevivência Celular/efeitos dos fármacos
2.
Biomolecules ; 13(12)2023 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-38136629

RESUMO

(1) Background: Cadmium (Cd) is a potentially toxic element with a long half-life in the human body (20-40 years). Cytotoxicity mechanisms of Cd include increased levels of oxidative stress and apoptotic signaling, and recent studies have suggested that these aspects of Cd toxicity contribute a role in the pathobiology of non-alcoholic fatty liver disease (NAFLD), a highly prevalent ailment associated with hepatic lipotoxicity and an increased generation of reactive oxygen species (ROS). In this study, Cd toxicity and its interplay with fatty acid (FA)-induced lipotoxicity have been studied in intestinal epithelium and liver cells; the cytoprotective function of melatonin (MLT) has been also evaluated. (2) Methods: human liver cells (HepaRG), primary murine hepatocytes and Caco-2 intestinal epithelial cells were exposed to CdCl2 before and after induction of lipotoxicity with oleic acid (OA) and/or palmitic acid (PA), and in some experiments, FA was combined with MLT (50 nM) treatment. (3) Results: CdCl2 toxicity was associated with ROS induction and reduced cell viability in both the hepatic and intestinal cells. Cd and FA synergized to induce lipid droplet formation and ROS production; the latter was higher for PA compared to OA in liver cells, resulting in a higher reduction in cell viability, especially in HepaRG and primary hepatocytes, whereas CACO-2 cells showed higher resistance to Cd/PA-induced lipotoxicity compared to liver cells. MLT showed significant protection against Cd toxicity either considered alone or combined with FFA-induced lipotoxicity in primary liver cells. (4) Conclusions: Cd and PA combine their pro-oxidant activity to induce lipotoxicity in cellular populations of the gut-liver axis. MLT can be used to lessen the synergistic effect of Cd-PA on cellular ROS formation.


Assuntos
Melatonina , Hepatopatia Gordurosa não Alcoólica , Camundongos , Humanos , Animais , Ácidos Graxos não Esterificados , Cádmio/farmacologia , Melatonina/farmacologia , Espécies Reativas de Oxigênio , Células CACO-2 , Hepatócitos , Hepatopatia Gordurosa não Alcoólica/prevenção & controle , Ácidos Graxos/farmacologia , Ácido Palmítico/farmacologia , Ácido Oleico/farmacologia
3.
BMJ Open ; 13(12): e072291, 2023 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-38135320

RESUMO

OBJECTIVE: Protein-energy malnutrition and the subsequent muscle wasting (sarcopenia) are common ageing complications. It is knowing to be also associated with dementia. Our programme will test the cytoprotective functions of vitamin E combined with the cortisol-lowering effect of chocolate polyphenols (PP), in combination with muscle anabolic effect of adequate dietary protein intake and physical exercise to prevent the age-dependent decline of muscle mass and its key underpinning mechanisms including mitochondrial function, and nutrient metabolism in muscle in the elderly. METHODS AND ANALYSIS: In 2020, a 6-month double-blind randomised controlled trial in 75 predementia older people was launched to prevent muscle mass loss, in respond to the 'Joint Programming Initiative A healthy diet for a healthy life'. In the run-in phase, participants will be stabilised on a protein-rich diet (0.9-1.0 g protein/kg ideal body weight/day) and physical exercise programme (high-intensity interval training specifically developed for these subjects). Subsequently, they will be randomised into three groups (1:1:1). The study arms will have a similar isocaloric diet and follow a similar physical exercise programme. Control group (n=25) will maintain the baseline diet; intervention groups will consume either 30 g/day of dark chocolate containing 500 mg total PP (corresponding to 60 mg epicatechin) and 100 mg vitamin E (as RRR-alpha-tocopherol) (n=25); or the high polyphenol chocolate without additional vitamin E (n=25). Muscle mass will be the primary endpoint. Other outcomes are neurocognitive status and previously identified biomolecular indices of frailty in predementia patients. Muscle biopsies will be collected to assess myocyte contraction and mitochondrial metabolism. Blood and plasma samples will be analysed for laboratory endpoints including nutrition metabolism and omics. ETHICS AND DISSEMINATION: All the ethical and regulatory approvals have been obtained by the ethical committees of the Azienda Ospedaliera Universitaria Integrata of Verona with respect to scientific content and compliance with applicable research and human subjects' regulation. Given the broader interest of the society toward undernutrition in the elderly, we identify four main target audiences for our research activity: national and local health systems, both internal and external to the project; targeted population (the elderly); general public; and academia. These activities include scientific workshops, public health awareness campaigns, project dedicated website and publication is scientific peer-review journals. TRIAL REGISTRATION NUMBER: NCT05343611.


Assuntos
Chocolate , Desnutrição Proteico-Calórica , Idoso , Humanos , Proteínas Alimentares , Vitamina E/uso terapêutico , Exercício Físico , Ensaios Clínicos Controlados Aleatórios como Assunto
4.
Int J Mol Sci ; 24(17)2023 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-37686103

RESUMO

Tendinopathies are common disabling conditions in equine and human athletes. The etiology is still unclear, although reactive oxygen species (ROS) and oxidative stress (OS) seem to play a crucial role. In addition, OS has been implicated in the failure of tendon lesion repair. Platelet-rich plasma (PRP) is rich in growth factors that promote tissue regeneration. This is a promising therapeutic approach in tendon injury. Moreover, growing evidence has been attributed to PRP antioxidant effects that can sustain tissue healing. In this study, the potential antioxidant effects of PRP in tenocytes exposed to oxidative stress were investigated. The results demonstrated that PRP reduces protein and lipid oxidative damage and protects tenocytes from OS-induced cell death. The results also showed that PRP was able to increase nuclear levels of redox-dependent transcription factor Nrf2 and to induce some antioxidant/phase II detoxifying enzymes (superoxide dismutase 2, catalase, heme oxygenase 1, NAD(P)H oxidoreductase quinone-1, glutamate cysteine ligase catalytic subunit and glutathione, S-transferase). Moreover, PRP also increased the enzymatic activity of catalase and glutathione S-transferase. In conclusion, this study suggests that PRP could activate various cellular signaling pathways, including the Nrf2 pathway, for the restoration of tenocyte homeostasis and to promote tendon regeneration and repair following tendon injuries.


Assuntos
Antioxidantes , Fator 2 Relacionado a NF-E2 , Animais , Plaquetas , Catalase , Cavalos , Tenócitos
5.
Front Endocrinol (Lausanne) ; 14: 1063916, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37065743

RESUMO

Lately, nickel oxide nanoparticles (NiO NPs) have been employed in different industrial and biomedical fields. Several studies have reported that NiO NPs may affect the development of reproductive organs inducing oxidative stress and, resulting in male infertility. We investigated the in vitro effects of NiO NPs on porcine pre-pubertal Sertoli cells (SCs) which undergone acute (24 h) and chronic (from 1 up to 3 weeks) exposure at two subtoxic doses of NiO NPs of 1 µg/ml and 5 µg/ml. After NiO NPs exposure we performed the following analysis: (a) SCs morphological analysis (Light Microscopy); (b) ROS production and oxidative DNA damage, gene expression of antioxidant enzymes (c) SCs functionality (AMH, inhibin B Real-time PCR analysis and ELISA test); (d) apoptosis (WB analysis); (e) pro-inflammatory cytokines (Real-time PCR analysis), and (f) MAPK kinase signaling pathway (WB analysis). We found that the SCs exposed to both subtoxic doses of NiO NPs didn't sustain substantial morphological changes. NiO NPs exposure, at each concentration, reported a marked increase of intracellular ROS at the third week of treatment and DNA damage at all exposure times. We demonstrated, un up-regulation of SOD and HO-1 gene expression, at both concentrations tested. The both subtoxic doses of NiO NPs detected a down-regulation of AMH and inhibin B gene expression and secreted proteins. Only the 5 µg/ml dose induced the activation of caspase-3 at the third week. At the two subtoxic doses of NiO NPs a clear pro-inflammatory response was resulted in an up-regulation of TNF-α and IL-6 in terms of mRNA. Finally, an increased phosphorylation ratio of p-ERK1/2, p-38 and p-AKT was observed up to the third week, at both concentrations. Our results show the negative impact of subtoxic doses NiO NPs chronic exposure on porcine SCs functionality and viability.


Assuntos
Infertilidade Masculina , Nanopartículas , Masculino , Animais , Suínos , Humanos , Espécies Reativas de Oxigênio/metabolismo , Células de Sertoli/metabolismo , Fatores de Risco
6.
J Nutr Biochem ; 117: 109319, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36963728

RESUMO

Vitamin D (VD) has been used to prevent nonalcoholic fatty liver disease (NAFLD), a condition of lipotoxicity associated with a defective metabolism and function of this vitamin. Different forms of VD are available and can be used for this scope, but their effects on liver cell lipotoxicity remain unexplored. In this study we compared a natural formulation rich in VD2 (Shiitake Mushroom extract or SM-VD2) with a synthetic formulation containing pure VD3 (SV-VD3) and the bioactive metabolite 1,25(OH)2-D3. These were investigated in chemoprevention mode in human HepaRG liver cells supplemented with oleic and palmitic acid to induce lipotoxicity. All the different forms of VD showed similar efficacy in reducing the levels of lipotoxicity and the changes that lipotoxicity induced on the cellular transcriptome. However, the three forms of VD generated different gene fingerprints suggesting diverse, even if functionally convergent, cytoprotective mechanisms. Main differences were (1) the number of differentially expressed genes (SV-VD3 > 1,25[OH]2-D3 > SM-VD2), (2) their identity that demonstrated significant gene homology between SM-VD2 and 1,25(OH)2-D3, and (3) the number and type of biological functions identified by ingenuity pathway analysis as relevant to liver metabolism and cytoprotection annotations. Immunoblot confirmed a different response of VDR and other VDR-related proteins to natural and synthetic VD formulations, including FXR, PXR, PPARγ/PGC-1α, and CYP3A4 and CYP24A1. In conclusion, different responses of the cellular transcriptome drive the cytoprotective effect of natural and synthetic formulations of VD in the free fatty acid-induced lipotoxicity of human hepatocytes.


Assuntos
Receptores de Calcitriol , Vitamina D , Humanos , Vitamina D/farmacologia , Vitamina D/metabolismo , Receptores de Calcitriol/genética , Receptores de Calcitriol/metabolismo , Transcriptoma , Hepatócitos/metabolismo , Vitaminas/farmacologia , Vitamina D3 24-Hidroxilase/genética
7.
Heliyon ; 8(9): e10748, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36193535

RESUMO

Wheat germ oil (WGO) is rich in α-tocopherol (vitamin E, VE), a vitamin that has long been suggested to exert hepatoprotective effects. In this study, this function of WGO-VE and its transcriptomics fingerprint were investigated in comparison with RRR-α-tocopherol and all-rac-α-tocopherol (nVE and sVE, respectively), in human liver cells treated with oleic acid (OA) to develop steatosis and lipotoxicity. Used in chemoprevention mode, all the VE formulations afforded significant reduction of the OA-induced steatosis and its consequent impact on lipotoxicity indicators, including ROS production and efflux (as H2O2), and apoptotic and necrotic cell death. A trend toward a better control of lipotoxicity was observed for WGO-VE and nVE compared to sVE. Gene microarray data demonstrated that these effects of VE formulations were associated with significantly different responses of the cellular transcriptome to compensate for the modifications of OA treatment, including the downregulation of cellular homeostasis genes and the induction of genes associated with defects of liver cell metabolism, fibrosis and inflammation, liver disease and cancer. Ingenuity Pathway Analysis data showed that WGO-VE modulated genes associated with liver carcinogenesis and steatosis, whereas nVE modulated genes involved in liver cell metabolism and viability biofunctions; sVE did not significantly modulate any gene dataset relevant to such biofunctions. In conclusion, WGO-VE prevents lipotoxicity in human liver cells modulating genes that differ from those affected by the natural or synthetic forms of pure VE. These differences can be captured by precision nutrition tools, reflecting the molecular complexity of this VE-rich extract and its potential in preventing specific cues of hepatocellular lipotoxicity.

8.
Artigo em Inglês | MEDLINE | ID: mdl-36011952

RESUMO

Environmental tobacco smoke remains a major risk factor, for both smokers and non-smokers, able to trigger the initiation and/or the progression of several human diseases. Although in recent times governments have acted with the aim of banning or strongly reducing its impact within public places and common spaces, environmental tobacco smoke remains a major pollutant in private places, such as the home environment or cars. Several inflammatory and long-term biomarkers have been analysed and well-described, but the list of mediators modulated during the early phases of inhalation of environmental tobacco smoke needs to be expanded. The aim of this study was to measure the short-term effects after exposure to side-stream smoke on Nerve Growth Factor and its receptors Tropomyosin-related kinase A and neurotrophin p75, molecules already described in health conditions and respiratory diseases. Twenty-one non-smokers were exposed to a home-standardized level of SS as well as to control smoke-free air. Nerve Growth Factor and inflammatory cytokines levels, as well the expression of Tropomyosin-related kinase A and neurotrophin receptor p75, were analysed in white blood cells. The present study demonstrates that during early phases, side-stream smoke exposure induced increases in the percentage of neurotrophin receptor p75-positive white blood cells, in their mean fluorescent intensity, and in gene expression. In addition, we found a positive correlation between the urine cotinine level and the percentage of neurotrophin receptor-positive white blood cells. For the first time, the evidence that short-term exposure to side-stream smoke is able to increase neurotrophin receptor p75 expression confirms the very early involvement of this receptor, not only among active smokers but also among non-smokers exposed to SS. Furthermore, the correlation between cotinine levels in urine and the increase in neurotrophin receptor p75-positive white blood cells could represent a potential novel molecule to be investigated for the detection of SS exposure at early time points.


Assuntos
Receptor de Fator de Crescimento Neural , Poluição por Fumaça de Tabaco , Cotinina , Humanos , não Fumantes , Receptor trkA/genética , Receptor trkA/metabolismo , Receptores de Fator de Crescimento Neural/genética , Receptores de Fator de Crescimento Neural/metabolismo , Rios , Poluição por Fumaça de Tabaco/efeitos adversos , Tropomiosina
9.
Antioxidants (Basel) ; 11(7)2022 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-35883857

RESUMO

SARS-CoV-2 infection can cause a severe respiratory distress syndrome with inflammatory and thrombotic complications, the severity of which increases with patients' age and presence of comorbidity. The reasons for an age-dependent increase in the risk of severe COVID-19 could be many. These include defects in the homeostatic processes that control the cellular redox and its pivotal role in sustaining the immuno-inflammatory response to the host and the protection against oxidative stress and tissue degeneration. Pathogens may take advantage of such age-dependent abnormalities. Alterations of the thiol redox balance in the lung tissue and lining fluids may influence the risk of infection, and the host capability to respond to pathogens and to avoid severe complications. SARS-CoV-2, likewise other viruses, such as HIV, influenza, and HSV, benefits in its replication cycle of pro-oxidant conditions that the same viral infection seems to induce in the host cell with mechanisms that remain poorly understood. We recently demonstrated that the pro-oxidant effects of SARS-CoV-2 infection are associated with changes in the cellular metabolism and transmembrane fluxes of Cys and GSH. These appear to be the consequence of an increased use of Cys in viral protein synthesis and to ER stress pathway activation that interfere with transcription factors, as Nrf2 and NFkB, important to coordinate the metabolism of GSH with other aspects of the stress response and with the pro-inflammatory effects of this virus in the host cell. This narrative review article describes these cellular and molecular aspects of SARS-CoV-2 infection, and the role that antivirals and cytoprotective agents such as N-acetyl cysteine may have to limit the cytopathic effects of this virus and to recover tissue homeostasis after infection.

10.
J Pineal Res ; 73(1): e12806, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35524288

RESUMO

Melatonin (MLT) is a cytoprotective agent holding potential to prevent cadmium (Cd) toxicity and its impact in testicular function and fertility. In this study, we explored such potential in porcine pre-pubertal Sertoli cells (SCs). Cd toxicity resulted in impaired SC viability and function, abnormal cellular H2 O2 generation and efflux, and induction of reductive stress by the upregulation of Nrf2 expression and activity, cystine uptake and glutathione biosynthesis, glutathione-S-transferase P (GSTP) expression, and protein glutathionylation inhibition. Cd toxicity also stimulated the activity of cellular kinases (MAPK-ERK1/2 and Akt) and NFkB transcription factor, and cJun expression was increased. MLT produced a potent cytoprotective effect when co-administered with Cd to SCs; its efficacy and the molecular mechanism behind its cytoprotective function varied according to Cd concentrations. However, a significant restoration of cell viability and function, and of H2 O2 levels, was observed both at 5 and 10 µM Cd. Mechanistically, these effects of MLT were associated with a significant reduction of the Cd-induced activation of Nrf2 and GSTP expression at all Cd concentrations. CAT and MAPK-ERK1/2 activity upregulation was associated with these effects at 5 µM Cd, whereas glutathione biosynthesis and efflux were involved at 10 µM Cd together with an increased expression of the cystine transporter xCT, of cJun and Akt and NFkB activity. MLT protects SCs from Cd toxicity reducing its H2 O2 generation and reductive stress effects. A reduced activity of Nrf2 and the modulation of other molecular players of MLT signaling, provide a mechanistic rational for the cytoprotective effect of this molecule in SCs.


Assuntos
Melatonina , Fator 2 Relacionado a NF-E2 , Animais , Cádmio/farmacologia , Cistina/metabolismo , Cistina/farmacologia , Glutationa/metabolismo , Masculino , Melatonina/metabolismo , Melatonina/farmacologia , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Células de Sertoli/metabolismo , Suínos
11.
Antioxidants (Basel) ; 11(3)2022 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-35326181

RESUMO

Defining optimal nutrition in animals and humans remains a main scientific challenge. The objective of the work was to develop a dynamic model of reactive oxygen species (ROS)-polyunsaturated fatty acid (PUFA)-antioxidant homeostasis using the rabbit as a model. The problem entity was to evaluate the main metabolites generated from interactions between traits included in the conceptual model and identified by three main sub-models: (i) ROS generation, (ii) PUFA oxidation and (iii) antioxidant defence. A mathematical model (VENSIM software) that consisted of molecular stocks (INPUTs, OUTPUTs), exchange flows (intermediate OUTPUTs) and process rates was developed. The calibration was performed by using standard experimental data (Experiment 1), whereas the validation was carried out in Experiments 2 and 3 by using supra-nutritional dietary inputs (VIT E+ and PUFA+). The accuracy of the models was measured using 95% confidence intervals. Analytical OUTPUTs (ROS, PUFA, Vit E, Ascorbic acid, Iso-/NeuroProstanes, Aldehydes) were well described by the standard model. There was also good accuracy for the VIT E+ scenario, whereas some compensatory rates (Kc1-Kc4) were added to assess body compensation when high levels of dietary PUFA were administered (Experiment 3). In conclusion, the model can be very useful for predicting the effects of dietary treatments on the redox homeostasis of rabbits.

12.
IUBMB Life ; 74(1): 93-100, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34390301

RESUMO

Unfolded protein response (UPR) and endoplasmic reticulum (ER) stress are aspects of SARS-CoV-2-host cell interaction with proposed role in the cytopathic and inflammatory pathogenesis of this viral infection. The role of the NF-kB pathway in these cellular processes remains poorly characterized. When investigated in VERO-E6 cells, SARS-CoV-2 infection was found to markedly stimulate NF-kB protein expression and activity. NF-kB activation occurs early in the infection process (6 hpi) and it is associated with increased MAPK signaling and expression of the UPR inducer IRE-1α. These signal transduction processes characterize the cellular stress response to the virus promoting a pro-inflammatory environment and caspase activation in the host cell. Inhibition of viral replication by the viral protease inhibitor Nelfinavir reverts all these molecular changes also stimulating c-Jun expression, a key component of the JNK/AP-1 pathway with important role in the IRE-1α-mediated transcriptional regulation of stress response genes with anti-inflammatory and cytoprotection function. The present study demonstrates that UPR signaling and its interaction with cellular MAPKs and the NF-kB activity are important aspects of SARS-CoV-2-host cell interaction that deserve further investigation to identify more efficient therapies for this viral infection.


Assuntos
Antivirais/farmacologia , Tratamento Farmacológico da COVID-19 , COVID-19/metabolismo , Estresse do Retículo Endoplasmático/efeitos dos fármacos , NF-kappa B/metabolismo , SARS-CoV-2 , Monofosfato de Adenosina/análogos & derivados , Monofosfato de Adenosina/farmacologia , Alanina/análogos & derivados , Alanina/farmacologia , Animais , COVID-19/virologia , Caspase 9/metabolismo , Chlorocebus aethiops , Efeito Citopatogênico Viral/efeitos dos fármacos , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Modelos Biológicos , Nelfinavir/farmacologia , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/patogenicidade , Resposta a Proteínas não Dobradas/efeitos dos fármacos , Células Vero
13.
Artigo em Inglês | MEDLINE | ID: mdl-34948629

RESUMO

BACKGROUND: Healthcare-associated infections caused by multi-drug resistant (MDR) pathogens are associated with increased mortality and morbidity among hospitalized patients. Inanimate surfaces, and in particular high-touch surfaces, have often been described as the source for outbreaks of nosocomial infections. The present work aimed to evaluate the efficacy of a last-generation mobile (robotic) irradiation UV-C light device R2S on MDR microorganisms in inanimate surfaces and its translation to hospital disinfection. METHODS: The efficacy of R2S system was evaluated in environmental high-touch surfaces of two separate outpatient rooms of Perugia Hospital in Italy. The static UV-C irradiation effect was investigated on both the bacterial growth of S. aureus, MRSA, P. aeruginosa, and K. pneumoniae KPC and photoreactivation. The antimicrobial activity was also tested on different surfaces, including glass, steel, and plastic. RESULTS: In the environmental tests, the R2S system decreased the number of bacteria, molds, and yeasts of each high-touch spot surface (HTSs) compared with manual sanitization. UV-C light irradiation significantly inhibits in vitro bacterial growth, also preventing photoreactivation. UV-C light bactericidal activity on MDR microorganisms is affected by the type of materials of inanimate surfaces. CONCLUSIONS: The last-generation mobile R2S system is a more reliable sanitizing procedure compared with its manual counterpart.


Assuntos
Infecção Hospitalar , Preparações Farmacêuticas , Procedimentos Cirúrgicos Robóticos , Desinfecção , Humanos , Staphylococcus aureus , Raios Ultravioleta
14.
Antioxidants (Basel) ; 10(11)2021 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-34829526

RESUMO

In this study, the phenol loading and antioxidant activity of wool yarn prepared with the aqueous extract of onion (Allium cepa L.) skin was enhanced by implementing the dyeing process with the use of alum as a mordant. Spectrophotometric and chromatographic methods were applied for the characterization of polyphenolic substances loaded on the wool yarn. The antioxidant/anti-inflammatory properties were evaluated by determining the level of intra- and extra-cellular reactive oxygen species (ROS) production in keratinocytes and dermal fibroblasts pre-treated with lipopolysaccharide put in contact with artificial sweat. An elevated dye uptake on wool was observed for the pre-mordanted sample, as demonstrated by high absorbance values in the UV-Visible spectral range. Chromatographic results showed that protocatechuic acid and its glucoside were the main phenolic acid released in artificial sweat by the wool yarns, while quercetin-4'-glucoside and its aglycone quercetin were more retained. The extract released from the textile immersed in artificial sweat showed a significant reducing effect on the intra-and extracellular ROS levels in the two cell lines considered. Cytofluorimetric analyses demonstrated that the selected mordant was safe at the concentration used in the dyeing procedure. Therefore, alum pre-mordanted textiles dyed with onion-skin extracts may represent an interesting tool against skin diseases.

15.
Redox Biol ; 45: 102041, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34146958

RESUMO

Viral infections sustain their replication cycle promoting a pro-oxidant environment in the host cell. In this context, specific alterations of the levels and homeostatic function of the tripeptide glutathione have been reported to play a causal role in the pro-oxidant and cytopathic effects (CPE) of the virus. In this study, these aspects were investigated for the first time in SARS-CoV2-infected Vero E6 cells, a reliable and well-characterized in vitro model of this infection. SARS-CoV2 markedly decreased the levels of cellular thiols, essentially lowering the reduced form of glutathione (GSH). Such an important defect occurred early in the CPE process (in the first 24 hpi). Thiol analysis in N-acetyl-Cys (NAC)-treated cells and membrane transporter expression data demonstrated that both a lowered uptake of the GSH biosynthesis precursor Cys and an increased efflux of cellular thiols, could play a role in this context. Increased levels of oxidized glutathione (GSSG) and protein glutathionylation were also observed along with upregulation of the ER stress marker PERK. The antiviral drugs Remdesivir (Rem) and Nelfinavir (Nel) influenced these changes at different levels, essentially confirming the importance or blocking viral replication to prevent GSH depletion in the host cell. Accordingly, Nel, the most potent antiviral in our in vitro study, produced a timely activation of Nrf2 transcription factor and a GSH enhancing response that synergized with NAC to restore GSH levels in the infected cells. Despite poor in vitro antiviral potency and GSH enhancing function, Rem treatment was found to prevent the SARS-CoV2-induced glutathionylation of cellular proteins. In conclusion, SARS-CoV2 infection impairs the metabolism of cellular glutathione. NAC and the antiviral Nel can prevent such defect in vitro.


Assuntos
COVID-19 , Glutationa , Glutationa/metabolismo , Dissulfeto de Glutationa/metabolismo , Humanos , Oxirredução , RNA Viral , SARS-CoV-2
16.
Viruses ; 13(3)2021 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-33807521

RESUMO

The aim of this study was to establish the persistence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) on inanimate surfaces such as plastic, stainless steel, and glass during UV-C irradiation which is a physical means commonly utilized in sanitization procedures. The viral inactivation rate, virus half-life, and percentage of titer reduction after UV-C irradiation were assessed. Infectivity was maintained on plastic and glass until 120 h and on stainless steel until 72 h. The virus half-life was 5.3, 4.4, and 4.2 h on plastic, stainless steel, and glass, respectively. In all cases, titer decay was >99% after drop drying. UV-C irradiation efficiently reduced virus titer (99.99%), with doses ranging from 10.25 to 23.71 mJ/cm2. Plastic and stainless steel needed higher doses to achieve target reduction. The total inactivation of SARS-CoV-2 on glass was obtained with the lower dose applied. SARS-CoV-2 survival can be long lasting on inanimate surfaces. It is worth recommending efficient disinfection protocols as a measure of prevention of viral spread. UV-C can provide rapid, efficient and sustainable sanitization procedures of different materials and surfaces. The dosages and mode of irradiation are important parameters to consider in their implementation as an important means to fight the SARS-CoV-2 pandemic.


Assuntos
COVID-19/virologia , Desinfecção/métodos , SARS-CoV-2/efeitos da radiação , Inativação de Vírus/efeitos da radiação , COVID-19/prevenção & controle , Desinfecção/instrumentação , Vidro/análise , Humanos , SARS-CoV-2/genética , SARS-CoV-2/fisiologia , Aço Inoxidável/análise , Raios Ultravioleta , Carga Viral/efeitos da radiação
17.
Redox Biol ; 41: 101902, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33662873

RESUMO

SARS-CoV-2 (COVID-19) infection can cause a severe respiratory distress syndrome. The risk of severe manifestations and mortality characteristically increase in the elderly and in the presence of non-COVID-19 comorbidity. We and others previously demonstrated that the low molecular weight (LMW) and protein thiol/disulfide ratio declines in human plasma with age and such decline is even more rapid in the case of inflammatory and premature aging diseases, which are also associated with the most severe complications of COVID-19 infection. The same decline with age of the LMW thiol/disulfide ratio observed in plasma appears to occur in the extracellular fluids of the respiratory tract and in association with many pulmonary diseases that characteristically reduce the concentrations and adaptive stress response of the lung glutathione. Early evidence in literature suggests that the thiol to disulfide balance of critical Cys residues of the COVID-19 spike protein and the ACE-2 receptor may influence the risk of infection and the severity of the disease, with a more oxidizing environment producing the worst prognosis. With this hypothesis paper we propose that the age-dependent decline of LMW thiol/disulfide ratio of the extracellular fluids, could play a role in promoting the physical (protein-protein) interaction of CoV-2 and the host cell in the airways. Therefore, this redox-dependent interaction is expected to affect the risk of severe infection in an age-dependent manner. The hypothesis can be verified in experimental models of in vitro CoV-2 infection and at the clinical level in that LMW thiols and protein thiolation can now be investigated with standardized, reliable and versatile laboratory protocols. Presenting the verification strategy of our hypothesis, we also discuss available nutritional and ancillary pharmacological strategies to intervene on the thiol/disulfide ratio of extracellular fluids of subjects at risk of infection and COVID-19 patients.


Assuntos
COVID-19 , Compostos de Sulfidrila , Idoso , Dissulfetos , Humanos , Oxirredução , SARS-CoV-2
18.
Oxid Med Cell Longev ; 2020: 3562972, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33062138

RESUMO

AIMS: Anethole dithiolethione (ADT) is a marketed drug to treat xerostomia. Its mechanism of action is still unknown, but several preclinical studies indicate that it is able to increase intracellular glutathione (GSH) and protect against oxidative stress. Here, we investigated the molecular mechanisms behind these effects. RESULTS: Oral treatment of rats confirmed the GSH enhancing properties of ADT; among the different organs examined in this study, only the kidney showed a significant GSH increase that was already observed at low-dose treatments. The increase in GSH correlated with a decrease in γ-glutamyltranspeptidase (γ-GT) activity of the different tissues. In vitro and ex vivo experiments with tubular renal cells and isolated perfused rat kidney showed that the cellular uptake of intact GSH was correlated with the extracellular concentrations of GSH. CONCLUSION: s. The prominent in vivopharmacological effect of ADT was a marked increase of GSH concentration in the kidney and a decrease of some systemic and renal biomarkers of oxidative stress. In particular, by inhibition of γ-GT activity, it decreased the production cysteinylglycine, a thiol that has prooxidant effects as the consequence of its autooxidation. The activity of ADT as GSH enhancer in both the circulation and the kidney was long-lasting. All these characteristics make ADT a promising drug to protect the kidney, and in particular proximal tubule cells, from xenobiotic-induced damage.


Assuntos
Anetol Tritiona/administração & dosagem , Glutationa/metabolismo , gama-Glutamiltransferase/metabolismo , Anetol Tritiona/farmacologia , Animais , Linhagem Celular , Cisteína/sangue , Cisteína/metabolismo , Dipeptídeos/sangue , Dipeptídeos/metabolismo , Dissulfetos/sangue , Glutationa/sangue , Humanos , Rim/efeitos dos fármacos , Rim/enzimologia , Rim/metabolismo , Túbulos Renais Proximais/citologia , Túbulos Renais Proximais/metabolismo , Masculino , Malondialdeído/sangue , Estresse Oxidativo/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , gama-Glutamiltransferase/antagonistas & inibidores
19.
Toxicol In Vitro ; 69: 105001, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32942007

RESUMO

It has been hypothesized that high glucose concentrations might contribute to the overall intracellular oxidative stress either by the direct generation of reactive oxygen species (ROS) or by altering the redox balance. Moreover, it has also been suggested that high glucose concentration can increase the susceptibility of DNA to genotoxic effects of xenobiotics. The aim of this approach was to test high glucose concentrations for pro-genotoxicity in human liver cells by setting up an in vitro model for hyperglycaemia. The experimental design included performing of tests on both human HepG2 tumour cells and HepaRG immortalized cells. Increased cell susceptibility to genotoxic xenobiotics was tested by challenging cell cultures with 4-nitroquinoline-N-oxide (4NQO) and evaluating the extent of primary DNA damage by comet assay. Moreover, we evaluated the relationship between glucose concentration and intracellular ROS, as well as the effects of glucose concentration on the induction of Nrf2-dependent genes such as Glutathione S-transferases, Heme­oxygenase-1, and Glutathione peroxidase-4. To investigate the involvement of ROS in the induced pro-genotoxic activity, parallel experimental sets were set up by considering co-treatment of cells with the model mutagen 4NQO and the antioxidant, glutathione precursor N-acetyl-L-cysteine. High glucose concentrations caused a significant increase in the levels of primary DNA damage, with a pro-genotoxic condition closely related to the concentration of glucose in the culture medium when cells were exposed to 4NQO. High glucose concentrations also stimulated the production of ROS and down-regulated genes involved in contrasting of the effects of oxidative stress. In conclusion, in the presence of high concentrations of glucose, the cells are in unfavourable conditions for the maintenance of genome integrity.


Assuntos
Hiperglicemia/genética , Hiperglicemia/metabolismo , Fígado/citologia , Mutagênicos/toxicidade , 4-Nitroquinolina-1-Óxido/toxicidade , Acetilcisteína/farmacologia , Antioxidantes/farmacologia , Linhagem Celular Tumoral , Ensaio Cometa , Dano ao DNA , Glucose , Glutationa Transferase/metabolismo , Heme Oxigenase-1/metabolismo , Humanos , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/metabolismo , Espécies Reativas de Oxigênio/metabolismo
20.
J Med Chem ; 63(7): 3701-3712, 2020 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-32160459

RESUMO

Pregnane X receptor (PXR) is a master xenobiotic-sensing transcription factor and a validated target for immune and inflammatory diseases. The identification of chemical probes to investigate the therapeutic relevance of the receptor is still highly desired. In fact, currently available PXR ligands are not highly selective and can exhibit toxicity and/or potential off-target effects. In this study, we have identified garcinoic acid as a selective and efficient PXR agonist. The properties of this natural molecule as a specific PXR agonist were demonstrated by the screening on a panel of nuclear receptors, the assessment of the physical and thermodynamic binding affinity, and the determination of the PXR-garcinoic acid complex crystal structure. Cytotoxicity, transcriptional, and functional properties were investigated in human liver cells, and compound activity and target engagement were confirmed in vivo in mouse liver and gut tissue. In conclusion, garcinoic acid is a selective natural agonist of PXR and a promising lead compound toward the development of new PXR-regulating modulators.


Assuntos
Benzopiranos/farmacologia , Receptor de Pregnano X/agonistas , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Animais , Benzopiranos/metabolismo , Benzopiranos/toxicidade , Linhagem Celular Tumoral , Cristalografia por Raios X , Citocromo P-450 CYP3A/metabolismo , Expressão Gênica/efeitos dos fármacos , Humanos , Fígado/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Receptor de Pregnano X/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA